Thursday, September 10, 2009

How does CAS work?

The CAS security policy revolves around two key concepts - code groups and permissions. Each .NET assembly is a member of a particular code group, and each code group is granted the permissions specified in a named permission set.For example, using the default security policy, a control downloaded from a web site belongs to the 'Zone - Internet' code group, which adheres to the permissions defined by the 'Internet' named permission set. (Naturally the 'Internet' named permission set represents a very restrictive range of permissions.)

Wednesday, September 9, 2009

What are attributes?

There are at least two types of .NET attribute. The first type I will refer to as a metadata attribute - it allows some data to be attached to a class or method. This data becomes part of the metadata for the class, and (like other class metadata) can be accessed via reflection.The other type of attribute is a context attribute. Context attributes use a similar syntax to metadata attributes but they are fundamentally different. Context attributes provide an interception mechanism whereby instance activation and method calls can bepre- and/or post-processed.

Tuesday, September 8, 2009

Why do I get errors when I try to serialize a Hashtable?

XmlSerializer will refuse to serialize instances of any class that implements IDictionary, e.g. Hashtable. SoapFormatter and BinaryFormatter do not have this restriction.

Monday, September 7, 2009

Why is XmlSerializer so slow?

There is a once-per-process-per-type overhead with XmlSerializer. So the first time you serialize or deserialize an object of a given type in an application, there is a significant delay. This normally doesn't matter, but it may mean, for example, that XmlSerializer is a poor choice for loading configuration settings during startup of a GUI application.

Sunday, September 6, 2009

Can I customise the serialization process?

Yes. XmlSerializer supports a range of attributes that can be used to configure serialization for a particular class. For example, a field or property can be marked with the [XmlIgnore] attribute to exclude it from serialization. Another example is the [XmlElement]attribute, which can be used to specify the XML element name to be used for a particular property or field.Serialization via SoapFormatter/BinaryFormatter can also be controlled to some extent by attributes. For example, the [NonSerialized] attribute is the equivalent of XmlSerializer's [XmlIgnore] attribute. Ultimate control of the serialization process can be acheived by implementing the the ISerializable interface on the class whose instances are to be serialized.

Saturday, September 5, 2009

Does the .NET Framework have in-built support for serialization?

There are two separate mechanisms provided by the .NET class library - XmlSerializer and SoapFormatter/BinaryFormatter. Microsoft uses XmlSerializer for Web Services, and uses SoapFormatter/BinaryFormatter for remoting. Both are available for use in your own code.

Friday, September 4, 2009

What is serialization?

Serialization is the process of converting an object into a stream of bytes. Deserialization is the opposite process of creating an object from a stream of bytes. Serialization / Deserialization is mostly used to transport objects (e.g. during remoting), or to persistobjects (e.g. to a file or database).

Thursday, September 3, 2009

Is the lack of deterministic destruction in .NET a problem?

It's certainly an issue that affects component design. If you have objects that maintain expensive or scarce resources (e.g. database locks), you need to provide some way for the client to tell the object to release the resource when it is done. Microsoft recommend that you provide a method called Dispose() for this purpose. However, this causes problems for distributed objects - in a distributed system who calls the Dispose() method? Some form of reference-counting or ownership-management mechanism is needed to handle distributed objects - unfortunately the runtime offers no help with this.

Wednesday, September 2, 2009

Why doesn't the .NET runtime offer deterministic destruction?

Because of the garbage collection algorithm. The .NET garbage collector works by periodically running through a list of all the objects that are currently being referenced by an application. All the objects that it doesn't find during this search are ready to be destroyed and the memory reclaimed. The implication of this algorithm is that the runtime doesn't get notified immediately when the final reference on an object goes away - it only finds out during the next sweep of the heap.Futhermore, this type of algorithm works best by performing the garbage collection sweep as rarely as possible. Normally heap exhaustion is the trigger for a collection sweep.

Tuesday, September 1, 2009

What is garbage collection?

Garbage collection is a system whereby a run-time component takes responsibility for managing the lifetime of objects and the heap memory that they occupy. This concept is not new to .NET - Java and many other languages/runtimes have used garbage collection for some time.